c-Jun protects hypoxia-inducible factor-1alpha from degradation via its oxygen-dependent degradation domain in a nontranscriptional manner.
نویسندگان
چکیده
Although hypoxia-inducible factor-1alpha (HIF-1alpha) has long been intensively investigated as a drug target by interfering with its expression or transcriptional function, the regulatory mechanisms of HIF-1alpha remain to be further clarified. We report here that c-Jun associates with HIF-1alpha via its oxygen-dependent degradation domain, masks the sites for ubiquitination, and thus protects HIF-1alpha from proteasome-executing degradation. All of these together resulted in the stabilization and accumulation of HIF-1alpha, consequently promoting the transcription of its target gene and driving angiogenesis-related events. The stabilization of HIF-1alpha was dependent on the domains of c-Jun for DNA binding and heterodimerization but independent of the Ser(63/73) phosphorylation that is critical for transcriptional function. These findings highlight a previously unrecognized nontranscriptional function of c-Jun on the one hand and a distinct regulatory mechanism of HIF-1alpha activity on the other, consequently offering profound mechanistic insights into multiple events simultaneously involving both c-Jun and HIF-1alpha in tumor progression.
منابع مشابه
Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway.
Hypoxia induces a group of physiologically important genes such as erythropoietin and vascular endothelial growth factor. These genes are transcriptionally up-regulated by hypoxia-inducible factor 1 (HIF-1), a global regulator that belongs to the basic helix-loop-helix PAS family. Although HIF-1 is a heterodimer composed of alpha and beta subunits, its activity is primarily determined by hypoxi...
متن کاملAccumulation of hypoxia-inducible factor-1alpha is limited by transcription-dependent depletion.
In the presence of oxygen and iron, hypoxia-inducible factor (HIF-1alpha) is rapidly degraded via the prolyl hydroxylases (PHD)/VHL pathways. Given striking similarities between p53 and HIF-1alpha regulation, we previously suggested that HIF-1 transcriptionally initiates its own degradation and therefore inhibitors of transcription must induce HIF-1alpha. Under normoxia, while inducing p53, inh...
متن کاملHypoxia-inducible factor-1 (HIF-1).
Adaptation to low oxygen tension (hypoxia) in cells and tissues leads to the transcriptional induction of a series of genes that participate in angiogenesis, iron metabolism, glucose metabolism, and cell proliferation/survival. The primary factor mediating this response is the hypoxia-inducible factor-1 (HIF-1), an oxygen-sensitive transcriptional activator. HIF-1 consists of a constitutively e...
متن کاملHypoxia-associated factor, a novel E3-ubiquitin ligase, binds and ubiquitinates hypoxia-inducible factor 1alpha, leading to its oxygen-independent degradation.
The hypoxia-inducible factor 1alpha (HIF-1alpha) is the master regulator of the cellular response to hypoxia. A key regulator of HIF-1alpha is von Hippel-Lindau protein (pVHL), which mediates the oxygen-dependent, proteasomal degradation of HIF-1alpha in normoxia. Here, we describe a new regulator of HIF-1alpha, the hypoxia-associated factor (HAF), a novel E3-ubiquitin ligase that binds HIF-1al...
متن کاملEndothelin-1 Inhibits Prolyl Hydroxylase Domain 2 to Activate Hypoxia-Inducible Factor-1α in Melanoma Cells
BACKGROUND The endothelin B receptor (ET(B)R) promotes tumorigenesis and melanoma progression through activation by endothelin (ET)-1, thus representing a promising therapeutic target. The stability of hypoxia-inducible factor (HIF)-1alpha is essential for melanomagenesis and progression, and is controlled by site-specific hydroxylation carried out by HIF-prolyl hydroxylase domain (PHD) and sub...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 69 19 شماره
صفحات -
تاریخ انتشار 2009